header image
<div class="breadcrumb breadcrumbs"><div class="breadcrumb-trail"> » <a href="https://lsi.sites.olt.ubc.ca" title="OLD OLD Life Sciences Institute" rel="home" class="trail-begin">Home</a> <span class="sep">»</span> <a href="https://lsi.sites.olt.ubc.ca/category/featured/" rel="tag">Featured</a>, <a href="https://lsi.sites.olt.ubc.ca/category/slideshow/" rel="tag">Slideshow</a> <span class="sep">»</span> Van Petegem Lab: </div></div>

Van Petegem Lab:


Van Petegem Lab

The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule

Authors: Ching-Chieh Tung, Paolo A. Lobo, Lynn Kimlicka, Filip Van Petegem. Lab of Filip Van Petegem, Cardiovascular Research Group, Department of Biochemistry and Molecular Biology.

Published in Nature  468, 585-588, November 25, 2010. doi:10.1038/nature09471

Abstract: Many physiological events require transient increases in cytosolic Ca2+ concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum1. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult2, 3. Here we show the 2.5 Å resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1–559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps4, 5 unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.

a place of mind, The University of British Columbia

-
Life Sciences Institute
2350 Health Sciences Mall,
Vancouver, BC, V6T 1Z3, Canada

Emergency Procedures | Accessibility | Contact UBC  | © Copyright The University of British Columbia